Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
An. bras. dermatol ; 95(3): 314-319, May-June 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1130868

ABSTRACT

Abstract Background: Although not fully understood, oxidative stress has been implicated in the pathogenesis of different autoimmune diseases such as systemic sclerosis. Accumulating evidence indicates that oxidative stress can induce mitochondrial DNA (mtDNA) damage and variations in mtDNA copy number (mtDNAcn). Objective: The aim of this study was to explore mtDNAcn and oxidative DNA damage byproducts in peripheral blood of patients with systemic sclerosis and healthy controls. Methods: Forty six patients with systemic sclerosis and forty nine healthy subjects were studied. Quantitative real-time PCR used to measure the relative mtDNAcn and the oxidative damage (oxidized purines) of each sample. Results: The mean mtDNAcn was lower in patients with systemic sclerosis than in healthy controls whereas the degree of mtDNA damage was significantly higher in cases as compared to controls. Moreover, there was a negative correlation between mtDNAcn and oxidative DNA damage. Study limitations: The lack of simultaneous analysis and quantification of DNA oxidative damage markers in serum or urine of patients with systemic sclerosis and healthy controls. Conclusion: These data suggest that alteration in mtDNAcn and increased oxidative DNA damage may be involved in the pathogenesis of systemic sclerosis.


Subject(s)
Humans , Male , Female , Adult , Scleroderma, Systemic/genetics , Scleroderma, Systemic/blood , DNA Damage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Oxidative Stress/genetics , DNA Copy Number Variations , Reference Values , Case-Control Studies , Reactive Oxygen Species/blood , Statistics, Nonparametric , Electrophoresis, Agar Gel , Real-Time Polymerase Chain Reaction , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL